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Introduction

• Terrain modeling (TTM) vs. end-to-end learning for robot 
navigation and exploration

• Classical methods for TTM:
• Classification: semantic-based
• Regression: geometry-based, proprioceptive  
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Current TTM for Legged Robots

• Our previous work (2022)
• Geometry-based + Semantic-based
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[1] Gan et al. "Multitask Learning for Scalable and Dense Multilayer Bayesian Map Inference." IEEE TRO (2022).



Current TTM for Legged Robots

• Wellhausen et al. (2019)
• Ground reaction score

• Faigl et al. (2019)
• Maximum forward velocity, attitude stability 

• Fan et al. (2021)
• Risks from collision, step, slippage, etc.

• Manually defined traversability
learn from demonstration

4

[1] Wellhausen et al. "Where should I walk? predicting terrain properties from images via self-supervised learning." IEEE RAL 4.2 (2019): 1509-1516.
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IRL-Based TTM for Autonomous Vehicles

• Wulfmeier et al. (2017)
• Maximum Entropy Deep Inverse Reinforcement Learning 

(MEDIRL)
• Zhang et al. (2018), Jung et al. (2021)
• MEDIRL + handcrafted kinematics/route plan

• when applied on legged robots can suffer from:
• Low model fidelity due to the incapability of modeling more 

agile legged robot motion using handcrafted features
• Suboptimality of demonstrations due to insufficient feedback
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Contributions

• We propose to incorporate robot proprioceptive 
(inertial) feature learning in an IRL framework for legged 
robots terrain traversability modeling
• We extend the MEDIRL framework into a Trajectory-

ranked MEDIRL framework and use locomotion energy 
as trajectory preference label to alleviate suboptimality
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Problem Formulation
• We model the process of legged robot walking on local 

terrain as an agent following a Markov Decision Process 
(MDP):
• A trajectory is defined as a sequence of state-action 

pairs followed by the agent:

• A demonstration    is a set of   collected from expert 
operation.
• IRL: Given         , to recover the underlying   explaining    .
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Problem Formulation

• State space: 
• Action space:
• Transition function:
• Rewards
• Path reward: 
• Goal reward: 

• Traversability cost: 
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Proposed Method

• Inertial Feature Learning with an Inertial Branch
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Proposed Method

• Locomotion Energy ranked Reward Extrapolation
• Trajectory ranking loss [1]:

• , if                 , where      is Average Energy Consumption 
(AEC), defined using joint torque    and joint displacement   :

• Lower AEC        higher trajectory rank        higher return
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[1] Brown et al. "Better-than-demonstrator imitation learning via automatically-ranked demonstrations." CoRL, 2020.



Proposed Method

• Overall framework
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Experiments

• Dataset Collection
• Dataset is collected by expert operating a quadruped robot platform 

equipped with Intel RealSense depth camera, IMU and Nvidia Jetson Xavier 
on different types of terrains on campus
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Mini-Cheetah Robot with Customized Sensor Suite North Campus at University of Michigan



Experiments

• Dataset Generation
• Elevation Map using Elevation Mapping [1]
• Elevation Variance
• Color Map by RGB averaging
• Trajectory using ORBSLAM2 [2]
• IMU raw signals
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Environmental Branch Ablation

• IRL Metrics
• Negative Log-Likelihood (NLL)
• Hausdorff Distance (HD)
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NLL ↓ HD ↓

ResNet-34 [1] 0.9490 13.4957

UNet [2] 0.9016 12.0014

ResUNet-34 [3] 0.8419 9.8219

[1] Deo et al. "Trajectory forecasts in unknown environments conditioned on grid-based plans." arXiv preprint arXiv:2001.00735 (2020).
[2] Ronneberger et al. "U-Net: Convolutional networks for biomedical image segmentation." MICCAI. Springer, Cham, 2015.
[3] Zhang et al. "Road extraction by deep residual U-Net." IEEE GRSL 15.5 (2018): 749-753.



Environmental Branch Ablation

15

ResNet-34 UNet ResUNet-34 Demo. Future Traj.Color Map



Inertial Feature Learning Evaluation

• Quantitative Results
• Better performance shows better model fidelity
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NLL ↓ HD ↓
Ours w/o inertial feature 
learning 0.8419 9.8219

Baseline method using 
handcrafted kinematics [1] 0.8821 10.1953

Ours w/ inertial feature 
learning 0.8419 9.8219

[1] Zhang et al. "Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road 
vehicle trajectories." CoRL (2018).



Inertial Feature Learning Evaluation

• Qualitative Results
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Energy-Based Reward Extrapolating Evaluation

• We simulate Mini-Cheetah to follow the optimal 
trajectories from both methods on the input elevation 
map for evaluation.
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MEDIRL T-MEDIRL

NLL↓ 0.7734 0.8132

HD↓ 8.1460 9.9126

Accuracy↑ 0.4001 0.6412

AEC↓ 4.634e-2J 4.179e-2J

Color MapT-MEDIRLMEDIRL

The difference in the simulated AEC 
corresponds to about 7 minutes extra operation.
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Limitations and Future Work
• The simplified discrete states and actions are unable to fully 

capture the agile motion capability of a legged robot.

• However, adding more dimensions comes with an exponential 
increase in computation complexity.

• Designing a hierarchical action and state space is an interesting 
future research direction.
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Q&A
ganlu@umich.edu
https://github.com/ganlumomo/minicheetah-traversability-irl
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